

ALEXANDER C. KARP
and Nicholas W. Zamiska

**THE
TECHNOLOGICAL
REPUBLIC**

**Hard Power, Soft Belief
and the Future of the West**

Advance Praise for *The Technological Republic*

“The wizards of America’s digital revolution have produced many shiny consumer products and apps. But they have often remained aloof from engaging in a sense of national purpose or common good. This book is a rallying cry, as we enter the age of artificial intelligence, for a return to the World War II era of cooperation between the technology industry and government in order to pursue innovation that will advance our national welfare and democratic goals. A fascinating and important work.”

—WALTER ISAACSON,
#1 *New York Times* bestselling author

‘Alex Karp’s book might be titled *A Freethinker’s Manifesto*. He decries the arrogance and small-mindedness of Silicon Valley and explains his passionate commitment to defending the West and its cultural values. Karp is a polymath: He and his co-author, Nicholas Zamiska, take the reader on an intellectual tour from anthropology to art and music to history and philosophy to explain what matters for our survival and success. He subtly quotes many brilliant thinkers, but I think the best summation of Karp’s own iconoclastic style in creating his wildly innovative software company, Palantir, is a quote from the comedian John Mulaney: “Likability is a jail.”’

—DAVID IGNATIUS,
Washington Post columnist and
bestselling author of *Phantom Orbit*

‘Alex Karp is what the Germans call a *Querdenker*—an orthogonal thinker, if not a downright contrarian one. Convinced that software could provide a service to national security as well as consumer gratification, he has built a unique business. *The Technological Republic* combines fascinating insights into Palantir’s mode of operation (it’s influenced by the way bees swarm, comedians improvise, and Isaiah Berlin thought) with Karp’s uncompromisingly national-liberal political philosophy. This is a stirring manifesto for a new Manhattan Project to ensure U.S. victory in the AI-enabled wars of the future. “Silicon Valley, awake!” is Karp and Zamiska’s message. “You risk losing everything if you choose cynicism over patriotism.”’

—NIALL FERGUSON,
Milbank Family Senior Fellow at Stanford University’s Hoover Institution
and *New York Times* bestselling author of *The Ascent of Money* and *Doom*

‘In today’s complicated geopolitical, technological, and economic environment, the authors’ ability to be both well spoken and outspoken in *The Technological Republic* can help us understand important issues about the future prosperity of the United States and its allies. The book is by turns provocative and insightful, and Alex Karp’s resilience, patriotism, and depth of experience in our rapidly changing world provide instructive lessons and intellectual arguments for all of us to consider.’

—JAMIE DIMON,
chairman and CEO of JPMorgan Chase

‘*The Technological Republic* should be read by everyone who cares about how technology should contribute to the protection of American values and our security. Alex Karp and co-author Nicholas Zamiska are unafraid to offend those among the technocratic elite who have drifted away from vital national questions to instead develop a smug and complacent focus on shopping websites, photo-sharing apps, and other shallow but wildly lucrative endeavors. To them, there is no point to fighting over who gets the most luxurious stateroom on the *Titanic*. Without a renewed commitment to addressing the most existential national threats we face, serious risks to our country will continue to grow—rendering mere business success quite hollow. Readers may not agree with every observation in this compelling, essential book, but it demands to be read, particularly at this dawn of the age of Artificial Intelligence. Alex Karp is a true patriot—a loving critic of his industry and his country who wants them both to be better.’

—GENERAL JAMES N. MATTIS
(USMC Retired)

‘Karp’s rallying cry for a “Technological Republic” sets out clearly what must happen for the democratic world to maintain its preeminence in the age of artificial intelligence. Engineers and technologists must use their talents to ensure the digital future enhances our democratic freedoms, not undermines them. This book is a wake-up call for tech entrepreneurs in Silicon Valley and beyond.’

—ANDERS FOGH RASMUSSEN,
founder of the Alliance of Democracies Foundation
and former NATO Secretary General (2009–2014)

Copyrighted Material

The Technological Republic

Copyrighted Material

Copyrighted Material

The Technological Republic

•

*Hard Power,
Soft Belief
and the Future
of the West*

Alexander C. Karp
and Nicholas W. Zamiska

1 3 5 7 9 10 8 6 4 2

The Bodley Head, an imprint of Vintage, is part of the
Penguin Random House group of companies

Vintage, Penguin Random House UK, One Embassy Gardens,
8 Viaduct Gardens, London SW11 7BW

penguin.co.uk/vintage
global.penguinrandomhouse.com

First published in Great Britain by The Bodley Head in 2025
First published in the United States of America by Crown Currency in 2025

Copyright © Alexander C. Karp and Nicholas W. Zamiska 2025

Alexander C. Karp and Nicholas W. Zamiska have asserted their right to be
identified as the authors of this Work in accordance with the Copyright,
Designs and Patents Act 1988

Designed by Aubrey Khan

No part of this book may be used or reproduced in any manner for the purpose
of training artificial intelligence technologies or systems. In accordance with Article 4(3)
of the DSM Directive 2019/790, Penguin Random House expressly reserves
this work from the text and data mining exception.

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

The authorised representative in the EEA is Penguin Random House Ireland,
Morrison Chambers, 32 Nassau Street, Dublin D02 YH68

A CIP catalogue record for this book is available from the British Library

HB ISBN 9781847928528
TPB ISBN 9781847928535

Penguin Random House is committed to a sustainable future for
our business, our readers and our planet. This book is made from
Forest Stewardship Council® certified paper.

Copyrighted Material

To those who seek
to move the hearts of others
and know their own

•

*You will never touch the hearts of others,
if it does not emerge from your own.*

*(“Werdet ihr nie Herz zu Herzen schaffen,
Wenn es euch nicht von Herzen geht.”)*

—JOHANN WOLFGANG VON GOETHE

Copyrighted Material

Copyrighted Material

The power to hurt is bargaining power.

To exploit it is diplomacy—

vicious diplomacy, but diplomacy.

—THOMAS SCHELLING

•

Fundamentalists rush in

where liberals fear to tread.

—MICHAEL SANDEL

Copyrighted Material

Copyrighted Material

•

Contents

List of Figures	<i>xi</i>
-----------------	-----------

Preface	<i>xiii</i>
---------	-------------

Part I

The Software Century	1
--------------------------------	---

<i>One</i> Lost Valley	3
------------------------	---

<i>Two</i> Sparks of Intelligence	16
-----------------------------------	----

<i>Three</i> The Winner’s Fallacy	29
-----------------------------------	----

<i>Four</i> End of the Atomic Age	37
-----------------------------------	----

Part II

The Hollowing Out of the American Mind	55
---	----

<i>Five</i> The Abandonment of Belief	57
---------------------------------------	----

<i>Six</i> Technological Agnostics	69
------------------------------------	----

<i>Seven</i> A Balloon Cut Loose	83
----------------------------------	----

<i>Eight</i> “Flawed Systems”	97
-------------------------------	----

<i>Nine</i> Lost in Toyland	103
-----------------------------	-----

Copyrighted Material

Part III

The Engineering Mindset 113

<i>Ten</i>	The Eck Swarm	115
<i>Eleven</i>	The Improvisational Startup	122
<i>Twelve</i>	The Disapproval of the Crowd	130
<i>Thirteen</i>	Building a Better Rifle	139
<i>Fourteen</i>	A Cloud or a Clock	156

Part IV

Rebuilding the Technological Republic 169

<i>Fifteen</i>	Into the Desert	171
<i>Sixteen</i>	Piety and Its Price	179
<i>Seventeen</i>	The Next Thousand Years	190
<i>Eighteen</i>	An Aesthetic Point of View	205
	Acknowledgments	219
	Notes	221
	Bibliography	261
	Art Credits	285
	Index	287

•

List of Figures

Figure 1 The Unicorn Drawing Test

Figure 2 Battle-Related Deaths Per 100,000 People Worldwide (1946 to 2016)

Figure 3 Defense Spending as a Percentage of GDP: United States and Europe (1960 to 2022)

Figure 4 Total Factor Productivity Growth in the United States (1900 to 2014)

Figure 5 Percentage of Harvard Graduates Bound for Finance or Consulting (1971 to 2022)

Figure 6 The Very Long Term: Estimated GDP Per Capita Worldwide (1 AD to 2003)

Figure 7 The Huntington-Wallace Line

Figure 8 Western Empires: Share of Territory and Global Economic Output

Figure 9 Locations of Potential Nesting Sites as Indicated by Honeybee ~~Daylight~~ ~~in the~~ ~~Swarm~~

Figure 10 The Asch Conformity Experiment

Figure 11 Percentage of Members of U.S. Congress Who Have Served in the Military

Figure 12 Accuracy of Predictions Made by “Foxes” and “Hedgehogs” in Philip Tetlock’s Review of 284 Experts

Figure 13 Support for U.S. Major League Baseball Teams as of 2014

Figure 14 *Ulysses and the Sirens* by Herbert James Draper, 1909

Figure 15 The Founder Premium: Total Return of Founder-Led Companies vs. Others (1990 to 2014)

•

Preface

THIS BOOK IS THE PRODUCT of a nearly decade-long conversation between its authors regarding technology, our national project, and the perilous political and cultural challenges that we collectively face.

A moment of reckoning has arrived for the West. The loss of national ambition and interest in the potential of science and technology, and resulting decline of government innovation across sectors, from medicine to space travel to military software, have created an innovation gap. The state has retreated from the pursuit of the kind of large-scale breakthroughs that gave rise to the atomic bomb and the internet, ceding the challenge of developing the next wave of pathbreaking technologies to the private sector—a remarkable and near-total placement of faith in the market. Silicon Valley, meanwhile, turned inward, focusing its energy on narrow consumer products, rather than projects that speak to and address our greater security and welfare.

The current digital age has been dominated by online advertising and shopping, as well as social media and video-sharing platforms. The grandiose rallying cry of a generation of founders in Silicon Valley was simply to build. Few asked what needed to be built, and why. For decades, we have taken this focus—and indeed obsession in many cases—by the technology industry on consumer culture for granted, hardly questioning the direction, and we think misdirection, of capital and talent to the trivial and ephemeral. Much of what passes for innovation today of what matters enormous amounts of talent and funding, will be forgotten before the decade is out.

The market is a powerful engine of destruction, creative and otherwise, but it often fails to deliver what is most needed at the right time. The Silicon Valley giants that dominate the American economy have made the strategic mistake of casting themselves as existing essentially outside the country in which they were built. The founders who created these companies in many cases viewed the United States as a dying empire, whose slow descent could not be allowed to stand in the way of their own rise and the new era's gold rush. Many of them essentially abandoned any serious attempt to advance society, to ensure that human civilization kept inching up the hill. The prevailing ethical framework of the Valley, a techno-utopian view that technology would solve all of humanity's problems, has devolved into a narrow and thin utilitarian approach, one that casts individuals as mere atoms in a system to be managed and contained. The vital yet messy questions of what constitutes a good life, which collective endeavors society should pursue, and what a shared and national identity can make possible have been set aside as the anachronisms of another age.

We can—we must—do better. The central argument that we advance in the pages that follow is that the software industry should rebuild its relationship with government and redirect its effort and attention to constructing the technology and artificial intelligence capabilities that will address the most pressing challenges that we collectively face. The engineering elite of Silicon Valley has an affirmative obligation to participate in the defense of the nation and the articulation of a national project—what is this country, what are our values, and for what do we stand—and, by extension, to preserve the enduring yet fragile geopolitical advantage that the United States and its allies in Europe and elsewhere have retained over their adversaries. It is, of course, the protection of individual rights against state encroachment that took its modern shape within “the West”—a concept that has been discarded ~~Copyright and Materially~~—without which the dizzying ascent of Silicon Valley would never have been possible.

The rise of artificial intelligence, which for the first time in history presents a plausible challenge to our species for creative supremacy in the world, has only heightened the urgency of revisiting questions of national identity and purpose that many had thought could be safely cast aside. We might have muddled through for years if not decades, dodging these more essential matters, if the rise of advanced AI, from large language models to the coming swarms of autonomous robots, had not threatened to upend the global order. The moment, however, to decide who we are and what we aspire to be, as a society and a civilization, is now.

Others might prefer or advocate for a more careful and deliberate division between the domains and concerns of the private and the public sectors. The blending of business and national purpose, of the discipline that the market can provide with an interest in the collective good, makes many uneasy. But purity comes at a cost. We believe that the reluctance of many business leaders to venture into, in any meaningful way and aside from the occasional and theatrical foray, the most consequential social and cultural debates of our time—including those regarding the relationship between the technology sector and the state—should give us pause. The decisions we collectively face are too consequential to be left unchallenged and unexamined. Those involved in constructing the technology that will animate and make possible nearly every aspect of our waking lives have a responsibility to expose and defend their views.

Our broader hope is that this book prompts a discussion of the role Silicon Valley can and should play in the advancement and reinvention of a national project, both in the United States and abroad—of what, beyond a firm and uncontroversial commitment to liberalism and its values, including the advancement of individual rights and fairness, constitutes our shared vision of the community to which we belong.

We recognize that a *Political Head of State* in nature is an unusual project for those in the private sector to undertake. But the stakes are

high, and growing. The technology industry's current reluctance to engage with these fundamental questions has deprived us of a positive vision for what this country or any other can and should be in an era of increasing technological change and risk. We also believe that the values of the engineering culture that gave rise to Silicon Valley, including its obsessive focus on outcomes and disinterest in theater and posturing—while complex and imperfect—will in the end prove vital to our ability to advance our national security and welfare.

Too many leaders are reluctant to venture into the discussion, to articulate genuine belief—in an idea, a set of values, or a political project—for fear that they will be punished in the contemporary public sphere. A significant subset of our leaders, elected and otherwise, both teach and are taught that belief itself is the enemy and that a lack of belief in anything, except oneself perhaps, is the most certain path to reward. The result is a culture in which those responsible for making our most consequential decisions—in any number of public domains, including government, industry, and academia—are often unsure of what their own beliefs are, or more fundamentally if they have any firm or authentic beliefs at all.

We hope that this book, including by its very existence, suggests that a far richer discourse, a more meaningful and nuanced inquiry into our beliefs as a society, shared and otherwise, is possible—and, indeed, imperative. Those in the private sector should not cede this terrain to others in academia and elsewhere out of a perceived lack of authority or expertise. Palantir itself is an attempt—imperfect, evolving, and incomplete—at constructing a collective enterprise, the creative output of which blends theory and action. The company's deployment of its software and its work in the world constitute the action. This book attempts to offer the beginnings of an articulation of the theory.

• Part I •

The Software Century

Copyrighted Material

Copyrighted Material

Chapter One

Lost Valley

SILICON VALLEY HAS LOST ITS WAY.

The initial rise of the American software industry was made possible in the first part of the twentieth century by what would seem today to be a radical and fraught partnership between emerging technology companies and the U.S. government. Silicon Valley's earliest innovations were driven not by technical minds chasing trivial consumer products but by scientists and engineers who aspired to see the most powerful technology of the age deployed to address challenges of industrial and national significance. Their pursuit of breakthroughs was intended not to satisfy the passing needs of the moment but rather to drive forward a much grander project, channeling the collective purpose and ambition of a nation. This early dependence of Silicon Valley on the nation-state and indeed the U.S. military has for the most part been forgotten, written out of the region's history as an inconvenient and dissonant fact—one that clashes with the Valley's conception of itself as indebted only to its capacity to innovate.

In the 1940s, the federal government began supporting an array of research projects that would culminate in the development of novel pharmaceutical compounds, intercontinental rockets, and satellites, as well as the precursors to **artificial intelligence**. Indeed, Silicon Valley once stood at the center of American military production and

national security. Fairchild Camera and Instrument Corporation, whose semiconductor division was founded in Mountain View, California, and made possible the first primitive personal computers, built reconnaissance equipment for spy satellites used by the Central Intelligence Agency beginning in the late 1950s. For a time after World War II, all of the U.S. Navy's ballistic missiles were produced in Santa Clara County, California. Companies such as Lockheed Missile & Space, Westinghouse, Ford Aerospace, and United Technologies had thousands of employees working in Silicon Valley on weapons production through the 1980s and into the 1990s.

This union of science and the state in the middle part of the twentieth century arose in the wake of World War II. In November 1944, as Soviet forces closed in on Germany from the east and Adolf Hitler prepared to abandon his Wolf's Lair, or *Wolfsschanze*, his eastern front headquarters in the north of present-day Poland, President Franklin Roosevelt was in Washington, D.C., already contemplating an American victory and the end of the conflict that had remade the world. Roosevelt sent a letter to Vannevar Bush, the son of a pastor who had become the head of the U.S. Office of Scientific Research and Development. Bush was born in 1890 in Everett, Massachusetts, just north of Boston. Both his father and his grandfather had grown up in Provincetown at the far end of Cape Cod. In the letter, Roosevelt described "the unique experiment" that the United States had undertaken during the war to leverage science in service of military ends. Roosevelt anticipated the next era—and partnership between national government and private industry—with precision. He wrote that there is "no reason why the lessons to be found in this experiment"—that is, directing the resources of an emerging scientific establishment to help wage the most significant and violent war that the world had ever known—"cannot be profitably employed in times of peace." His ambition was clear. Roosevelt intended to see that the machinery of the state and its power and prestige, as well as the financial resources of the newly victorious nation and emerging

hegemon—would spur the scientific community forward in service of, among other things, the advancement of public health and national welfare. The challenge was to ensure that the engineers and researchers who had directed their attention to the industry of war—and particularly the physicists, who as Bush noted had “been thrown most violently off stride”—could shift their efforts back to civilian advances in an era of relative peace.

The entanglement of the state and scientific research both before and after the war was itself built on an even longer history of connection between innovation and politics. Many of the earliest leaders of the American republic were themselves engineers, from Thomas Jefferson, who designed sundials and studied writing machines, to Benjamin Franklin, who experimented with and constructed everything from lightning rods to eyeglasses. Franklin was not someone who dabbled in science. He was an engineer, one of the most productive in the century, who happened to become a politician. Dudley Herschbach, a Harvard professor and chemist, has observed that the Founding Father’s research into electricity “was recognized as ushering in a scientific revolution comparable to those wrought by Newton in the previous century or by Watson and Crick in ours.” For Jefferson, science and natural history were his “passion,” he wrote in a letter to a federal judge in Kentucky in 1791, while politics was his “duty.” Some fields were so new that nonspecialists could aspire to make plausible contributions to them. James Madison dissected an American weasel and took nearly forty measurements of the animal in order to compare it with European varieties of the species, as part of an investigation into a theory, advanced by the French naturalist Georges-Louis Leclerc in the eighteenth century, that animals in North America had degenerated into smaller and weaker versions of their counterparts across the ocean.

Unlike the legions of lawyers who have come to dominate American politics in the modern era, many early American leaders, even if not practitioners of science themselves, were nonetheless remarkably

fluent in matters of engineering and technology.* John Adams, the second president of the United States, by one historian's account was focused on steering the early republic away from "unprofitable science, identifiable in its focus on objects of vain curiosity," and toward more practical forms of inquiry, including "applying science to the promotion of agriculture." The innovators of the eighteenth and nineteenth centuries were often polymaths whose interests diverged wildly from the contemporary expectation that depth, as opposed to breadth, is the most effective means of contributing to a field. The term "scientist" itself was only coined in 1834, to describe Mary Somerville, a Scottish astronomer and mathematician; prior to that, the blending of pursuits across physics and the humanities, for instance, was so commonplace and natural that a more specialized word had not been needed. Many had little regard for the boundary lines between disciplines, ranging from areas of study as seemingly unrelated as linguistics to chemistry, and zoology to physics. The frontiers and edges of science were still in that earliest stage of expansion. As of 1481, the library at the Vatican, the largest in Europe, had around thirty-five hundred books and documents. The limited extent of humanity's collective knowledge made possible and encouraged an interdisciplinary approach that would almost be certain to stall an academic career today. That cross-pollination, as well as the absence of a rigid adherence to the boundaries between disciplines, was vital to a willingness to experiment, and to the confidence of political leaders to opine on engineering and technical questions that implicated matters of government.

* We have, in the modern era, crowded out technical minds from electoral office. There are notable exceptions. Margaret Thatcher, for example, worked as a chemist at a plastics firm before becoming the British prime minister, and Angela Merkel earned a doctorate in quantum chemistry in East Germany prior to serving as chancellor. Yet contemporary democratic regimes have not placed scientists at their center. A survey conducted in 2023 found that only 1.3 percent of state legislators in the United States were either scientists or engineers.

The rise of J. Robert Oppenheimer and dozens of his colleagues in the late 1930s only further situated scientists and engineers at the heart of American life and the defense of the democratic experiment. Joseph Licklider, a psychologist whose work at the Massachusetts Institute of Technology anticipated the rise of early forms of AI, was hired in 1962 by the organization that would become the U.S. Defense Advanced Research Projects Agency—an institution whose innovations would include the precursors to the modern internet as well as the global positioning system. His research for his now classic paper “Man-Computer Symbiosis,” which was published in March 1960 and sketched a vision of the interplay between computing intelligence and our own, was supported by the U.S. Air Force. There was a closeness, and significant degree of trust, in the relationships between political leaders and the scientists on whom they relied for guidance and direction. Shortly after the launch by the Soviet Union of the satellite Sputnik in October 1957, Hans Bethe, the German-born theoretical physicist and adviser to President Dwight D. Eisenhower, was called to the White House. Within an hour, there was agreement on a path forward to reinvigorate the American space program. “You see that this is done,” Eisenhower told an aide. The pace of change and action in that era was swift. NASA was founded the following year.

By the end of World War II, the blending of science and public life—of technical innovation and affairs of state—was essentially complete and unremarkable. Many of these engineers and innovators would labor in obscurity. Others, however, were celebrities in a way that might be difficult to imagine today. In 1942, as war spread across Europe and the Pacific, an article in *Collier's* introduced Vannevar Bush, who would help found the Manhattan Project but was at the time a little-known engineer and government bureaucrat, to the magazine's readership of nearly three million, describing Bush as “the man who may win the war.”¹ And interest in those untangling the most fundamental mysteries of the physical world had been growing

for decades on both sides of the Atlantic. Marie Curie sent a letter to her brother in 1903, shortly after discovering radium and winning the Nobel Prize, her first of two, noting the onslaught of requests from journalists. “One would like to dig into the ground somewhere to find a little peace,” she wrote. Similarly, Albert Einstein was not only one of the twentieth century’s greatest scientific minds but also one of its most prominent celebrities—a popular figure whose image and breakthrough discoveries that so thoroughly defied our intuitive understanding of the nature of space and time routinely made front-page news. And it was often the science itself that was the focus of coverage.

This was the American century, and engineers were at the heart of the era’s ascendant mythology. The pursuit of public interest through science and engineering was considered a natural extension of the national project, which entailed not only protecting U.S. interests but moving society, and indeed civilization, up the hill. And while the scientific community required funding and extensive support from the government, the modern state was equally reliant on the advances that those investments in science and engineering produced. The technical outperformance of the United States in the twentieth century—that is, the country’s ability to reliably deliver economic and scientific advances for the public, from medical breakthroughs to military capabilities—was essential to its credibility. As Jürgen Habermas has suggested, a failure by leaders to deliver on implied or explicit promises to the public has the potential to provoke a crisis of legitimacy for a government. When emerging technologies that give rise to wealth do not advance the broader public interest, trouble often follows. Put differently, the decadence of a culture or civilization, and indeed its ruling class, will be forgiven only if that culture is capable of delivering economic growth and security for the public. In this way, the willingness of the engineering and scientific communities to come to the aid of the nation has been

vital not only to the legitimacy of the private sector but to the durability of political institutions across the West.

• • •

The modern incarnation of Silicon Valley has strayed significantly from this tradition of collaboration with the U.S. government, focusing instead on the consumer market, including the online advertising and social media platforms that have come to dominate—and limit—our sense of the potential of technology. A generation of founders cloaked themselves in the rhetoric of lofty and ambitious purpose—indeed their rallying cry to *change the world* has grown lifeless from overuse—but often raised enormous amounts of capital and hired legions of talented engineers merely to build photo-sharing apps and chat interfaces for the modern consumer. A skepticism of government work and national ambition took hold in the Valley. The grand, collectivist experiments of the earlier part of the twentieth century were discarded in favor of a narrow attentiveness to the desires and needs of the individual. The market rewarded shallow engagement with the potential of technology, as startup after startup catered to the whims of late capitalist culture without any interest in constructing the technical infrastructure that would address our most significant challenges as a nation. The age of social media platforms and food delivery apps had arrived. Medical breakthroughs, education reform, and military advances would have to wait.

For decades, the U.S. government was viewed in Silicon Valley as an impediment to innovation and a magnet for controversy—the obstacle to progress, not its logical partner. The technology giants of the current era long avoided government work. The level of internal dysfunction within many state and federal agencies created seemingly insurmountable barriers to entry for outsiders, including the insurgent startups of the *new economy*.¹⁰ Meanwhile, the tech industry

grew disinterested in politics and broader communal projects. It viewed the American national project, if it could even be called that, with a mix of skepticism and indifference. As a result, many of the Valley's best minds, and their flocks of engineering disciples, turned to the consumer for sustenance.

Later in these pages, we will examine the reasons that the modern technology giants, including Google, Amazon, and Facebook, shifted their focus away from collaboration with the state to the consumer market. The fundamental causes of the shift include the increasing divergence of the interests and political instincts of the American elite from those of the rest of the country following the end of World War II, as well as the emotional distance of a generation of software engineers from the broader economic struggles of the country and geopolitical threats of the twentieth century. The most capable generation of coders has never experienced a war or genuine social upheaval. Why court controversy with your friends or risk their disapproval by working for the U.S. military when you can retreat into the perceived safety of building another app?

As Silicon Valley turned inward and toward the consumer, the U.S. government and the governments of many of its allies scaled back involvement and innovation across numerous domains, from space travel to military software to medical research. A widening innovation gap was left by the state's retreat. Many on both sides of the divide cheered this divergence, with skeptics of the private sector arguing that it could not be trusted to operate in public domains and those in the Valley remaining wary of government control and the misuse or abuse of their inventions. It will, however, be a union of the state and the software industry—not their separation and disentanglement—that will be required for the United States and its allies in Europe and around the world to remain as dominant in this century as they were in the last.

In this book, we make the case that the technology sector has an

affirmative obligation to support the state that made its rise possible. A renewed embrace of the public interest will be essential if the software industry is to rebuild trust with the country and move toward a more transformative vision of what technology can and should make possible. The ability of government to continue to provide for the welfare and security of the public will also require a willingness on the part of the state to borrow from the idiosyncratic organizational culture that enabled so many companies in Silicon Valley to reshape entire sectors of our economy. A commitment to advancing outcomes at the expense of theater, to empowering those on the margins of an organization who may be closest to the problem, and to setting aside vain theological debates in favor of even marginal and often imperfect progress is what allowed the American technology industry to transform our lives. Those values also have the potential to transform our government.

Indeed, the legitimacy of the American government and democratic regimes around the world will require an increase in economic and technical output that can be achieved only through the more efficient adoption of technology and software. The public will forgive many failures and sins of the political class. But the electorate will not overlook a systemic inability to harness technology for the purpose of effectively delivering the goods and services that are essential to our lives.

• • •

This book proceeds in four parts. In Part I, “The Software Century,” we argue that the current generation of spectacularly talented engineering minds has become unmoored from any sense of national purpose or grander and more meaningful project. These programmers retreated into the construction of their technical wonders. And wonders indeed have been built. The newest forms of artificial

intelligence, known as large language models, have for the first time in history pointed to the possibility of artificial general intelligence—that is, a computing intellect that could rival that of the human mind when it comes to abstract reasoning and solving problems. It is not clear, however, that the technology companies building these new forms of AI will allow them to be used for military purposes. Many are hesitant if not outright opposed to working with the U.S. government at all.

We make the case that one of the most significant challenges that we face in this country is ensuring that the U.S. Department of Defense turns the corner from an institution designed to fight and win kinetic wars to an organization that can design, build, and acquire AI weaponry—the unmanned drone swarms and robots that will dominate the coming battlefield. The twenty-first century is the software century. And the fate of the United States, and its allies, depends on the ability of their defense and intelligence agencies to evolve, and briskly. The generation that is best positioned to develop such weaponry, however, is also the most hesitant, the most skeptical of dedicating its considerable talents to military purposes. Many of these engineers have never encountered someone who has served in the military. They exist in a cultural space that enjoys the protection of the American security umbrella but are responsible for none of its costs.

Part II, “The Hollowing Out of the American Mind,” offers an account of how we got here—of the origins of our broader cultural retreat both in the United States and across the West. We begin with the most structural issue—the current generation’s abandonment of belief or conviction in broader political projects. The most talented minds in the country and the world have for the most part retreated from the often messy and controversial work that is most vital and significant to our collective welfare and defense. These engineers decline to work for the ~~US military~~ material

their lives to raising capital to build the next app or social media platform of the moment. The causes of this turn away from defending the American national project, we argue, include the systematic attack and attempt to dismantle any conception of American or Western identity during the 1960s and 1970s. The dismantling of an entire system of privilege was rightly begun. But we failed to resurrect anything substantial, a coherent collective identity or set of communal values, in its place. The void was left open, and the market rushed in with fervor to fill the gap.

The result was a hollowing out of the American project, with a rudderless yet highly educated elite at the helm. This generation knew what it opposed—what it stood against and could not condone—but not what it was for. The earliest technologists who built the personal computer, the graphical user interface, and the mouse, for example, had grown skeptical of advancing the aims of a nation whose allegiance many of them believed it did not deserve. The rise of the internet in the 1990s was as a result co-opted by the market, and the consumer was hailed as its king. But many have rightly questioned whether that initial digital revolution made possible by the advent of the internet, in the 1990s and 2000s, truly improved our lives, instead of merely changing them.

It was against this backdrop that Palantir was founded and set out working for American defense and intelligence agencies in the years after the September 11 attacks. In Part III, “The Engineering Mindset,” we describe the organizational culture that makes Palantir and many of the other technology giants that have been founded in Silicon Valley distinct. So much of what makes Palantir work constitutes a direct rejection of the standard model in American corporate practice. In particular, we discuss the lessons we can learn from the social organization of honeybee swarms and flocks of starlings and the implications of improvisational theater for building startups, as well as the conformity experiments by Solomon Asch, Stanley